Инструмент

Токарная обработка сверление отверстий

Содержание

Сверление

Чтобы обрабатывать отверстия, их необходимо предварительно получить, для чего можно использовать различные технологии. Наиболее распространенной из таких технологий является сверление, выполняемое с использованием режущего инструмента, который называется сверлом.

При помощи сверл, устанавливаемых в специальных приспособлениях или оборудовании, в сплошном материале можно получать как сквозные, так и глухие отверстия. В зависимости от используемых приспособлений и оборудования сверление может быть:

  • ручным, выполняемым посредством механических сверлильных устройств или электро- и пневмодрелей;
  • станочным, осуществляемым на специализированном сверлильном оборудовании.

Использование ручных сверлильных устройств является целесообразным в тех случаях, когда отверстия, диаметр которых не превышает 12 мм, необходимо получить в заготовках из материалов небольшой и средней твердости. К таким материалам, в частности, относятся:

  • конструкционные стали;
  • цветные металлы и сплавы;
  • сплавы из полимерных материалов.

Если в обрабатываемой детали необходимо выполнить отверстие большего диаметра, а также добиться высокой производительности данного процесса, лучше всего использовать специальные сверлильные станки, которые могут быть настольными и стационарными. Последние в свою очередь подразделяются на вертикально- и радиально-сверлильные.

Рассверливание – тип сверлильной операции – выполняется для того, чтобы увеличить диаметр отверстия, сделанного в обрабатываемой детали ранее. Рассверливание также выполняется при помощи сверл, диаметр которых соответствует требуемым характеристикам готового отверстия.

Такой способ обработки отверстий нежелательно применять для тех из них, которые были созданы методом литья или посредством пластической деформации материала. Связано это с тем, что участки их внутренней поверхности характеризуются различной твердостью, что является причиной неравномерного распределения нагрузок на ось сверла и, соответственно, приводит к его смещению. Формирование слоя окалины на внутренней поверхности отверстия, созданного с помощью литья, а также концентрация внутренних напряжений в структуре детали, изготовленной методом ковки или штамповки, может стать причиной того, что при рассверливании таких заготовок сверло не только сместится с требуемой траектории, но и сломается.

При выполнении сверления и рассверливания можно получить поверхности, шероховатость которых будет доходить до показателя Rz 80, при этом точность параметров формируемого отверстия будет соответствовать десятому квалитету.

Обработка отверстий: виды операций и используемый инструмент

Обработка отверстий – это целый ряд технологических операций, целью которых является доведение геометрических параметров, а также степени шероховатости внутренней поверхности предварительно выполненных отверстий до требуемых значений. Отверстия, которые обрабатываются при помощи таких технологических операций, могут быть предварительно получены в сплошном материале не только при помощи сверления, но также методом литья, продавливания и другими способами.

Обработка высверленного отверстия цилиндрическим зенкером

Конкретный способ и инструмент для обработки отверстий выбираются в соответствии с характеристиками необходимого результата. Различают три способа обработки отверстий – сверление, развертывание и зенкерование. В свою очередь эти методы подразделяются на дополнительные технологические операции, к которым относятся рассверливание, цекование и зенкование.

Чтобы понять особенности каждого из вышеперечисленных способов, стоит рассмотреть их подробнее.

Зенкование и цекование

При выполнении зенкования используется специальный инструмент – зенковка. При этом обработке подвергается только верхняя часть отверстия. Применяют такую технологическую операцию в тех случаях, когда в данной части отверстия необходимо сформировать углубление для головок крепежных элементов или просто снять с нее фаску.

Чем различаются зенкование и цекование

При выполнении зенкования также придерживаются определенных правил.

  • Выполняют такую операцию только после того, как отверстие в детали будет полностью просверлено.
  • Сверление и зенкование выполняются за одну установку детали на станке.
  • Для зенкования устанавливают небольшие обороты шпинделя (не больше 100 оборотов в минуту) и применяют ручную подачу инструмента.
  • В тех случаях, когда зенкование осуществляется цилиндрическим инструментом, диаметр цапфы которого больше диаметра обрабатываемого отверстия, работу выполняют в следующей последовательности: сначала сверлится отверстие, диаметр которого равен диаметру цапфы, выполняется зенкование, затем основное отверстие рассверливается на заданный размер.

Целью такого вида обработки, как цекование, является зачистка поверхностей детали, которые будут соприкасаться с гайками, головками болтов, шайбами и стопорными кольцами. Выполняется данная операция также на станках и при помощи цековки, для установки которой на оборудование применяются оправки.

Зенкерование

При помощи зенкерования, выполняемого с использованием специального режущего инструмента, решаются следующие задачи, связанные с обработкой отверстий, полученных методом литья, штамповки, ковки или посредством других технологических операций:

  • приведение формы и геометрических параметров имеющегося отверстия в соответствие с требуемыми значениями;
  • повышение точности параметров предварительно просверленного отверстия вплоть до восьмого квалитета;
  • обработка цилиндрических отверстий для уменьшения степени шероховатости их внутренней поверхности, которая при использовании такой технологической операции может доходить до значения Ra 1,25.

При зенкеровании прикладывается меньшая сила реза, чем при сверлении, и отверстие получается более точное по форме и размерам

Если такой обработке необходимо подвергнуть отверстие небольшого диаметра, то ее можно выполнить на настольных сверлильных станках. Зенкерование отверстий большого диаметра, а также обработка глубоких отверстий выполняются на стационарном оборудовании, устанавливаемом на специальном фундаменте.

Ручное сверлильное оборудование для зенкерования не используется, так как его технические характеристики не позволяют обеспечить требуемую точность и шероховатость поверхности обрабатываемого отверстия. Разновидностями зенкерования являются такие технологические операции, как цекование и зенкование, при выполнении которых используются различные инструменты для обработки отверстий.

Специалисты дают следующие рекомендации для тех, кто планирует выполнить зенкерование.

  • Зенкерование следует проводить в процессе той же установки детали на станке, при которой осуществлялось сверление отверстия, при этом из параметров обработки меняется только тип используемого инструмента.
  • В тех случаях, когда зенкерованию подвергается необработанное отверстие в деталях корпусного типа, необходимо контролировать надежность их фиксации на рабочем столе станка.
  • Выбирая величину припуска на зенкерование, надо ориентироваться на специальные таблицы.
  • Режимы, на которых выполняется зенкерование, должны быть такими же, как и при осуществлении сверления.
  • При зенкеровании должны соблюдаться те же правила охраны труда и техники безопасности, как и при сверлении на слесарно-сверлильном оборудовании.

Развертывание

Процедуре развертывания подвергаются отверстия, которые предварительно были получены в детали при помощи сверления. Обработанный с использованием такой технологической операции элемент может иметь точность, степень которой доходит до шестого квалитета, а также невысокую шероховатость – до Ra 0,63. Развертки делятся на черновые и чистовые, также они могут быть ручными или машинными.

Цилиндрические ручные развертки 24Н8 0150

Рекомендации, которых следует придерживаться при выполнении данного вида обработки, заключаются в следующем.

  • Припуски в диаметре обрабатываемого отверстия выбираются по специальным таблицам.
  • При использовании ручного инструмента, который вращают только по часовой стрелке, сначала выполняют черновое, а потом чистовое развертывание.
  • Обработку стальных деталей выполняют с обязательным использованием СОЖ, чугунных – всухую.
  • Машинное развертывание проводят сразу после сверления на станке – с одной установки детали.
  • Для контроля качества результата используют специальные калибры.

Микродиаметры для обработки нержавеющей стали и титана

Еще меньшие диаметры, еще более глубокие отверстия и ‒ все это в труднообрабатываемых материалах. Звучит сумасшедше, не правда ли? Нержавеющие стали, жаропрочные сплавы или биосовместимые материалы поддаются обработке достаточно трудно, но они применяются в области медицины именно из-за своих свойств….

Sandvik Coromant запустила серию обучающих вебинаров по цельному вращающемуся инструменту

Компания Sandvik Coromant, эксперт в области режущего инструмента и инструментальных систем, запустила программу обучения для всех желающих по цельному вращающемуся инструменту.

токарная, обработка, сверление, отверстие

С правильным охлаждением и правильной геометрией: сверление отверстий глубиной до 40 x d за один проход даже в нержавеющих и жаропрочных сталях

Маленькое, быстрое и глубокого сверления – вот характеристики сверла серии CrazyDrill Cool SST-Inox. Благодаря наличию внутренних каналов для подачи СОЖ, инновационной геометрии и новому покрытию обработка нержавеющих сталей, суперсплавов на основе никеля и кобальт-хромовых сплавов стала значительно проще и стабильнее….

Рубрика: СВЕРЛЕНИЕ

Сверление и все, что с ним связано. Решение технологических проблем, описание современных технологий. Новости производителей инструмента. Новый инструмента для сверления отверстий.

Твердосплавное сверло HPR от компании Kennametal

Линейка твердосплавных сверл от компании Kennametal пополнилась новым высокопроизводительным сверлом HPR для обработки чугуна. Предназначенное для высокоскоростного сверления отверстий глубиной до 8 x D в деталях из чугуна любого типа с большими значениями подачи, сверло HPR обеспечивает превосходную прямолинейность отверстий…

Компания Kennametal представляет геометрию с плоским торцом для модульных сверл KenTIP FS

Новая сменная режущая пластина KenTIP FS FEG снижает затраты и упрощает производственные процессы. Компания Kennametal расширила ассортимент сменных режущих пластин для модульных сверл серии KenTIP FS, включив в него новую геометрию FEG с плоским торцом. Предназначенная для обработки чугуна и…

Компания Kennametal представляет сверло FBX для высокоэффективной обработки деталей аэрокосмической отрасли

Компания Kennametal представляет сверло FBX для формирования отверстий с плоским дном в структурных деталях аэрокосмического назначения. Запатентованное сверло FBX обеспечивает высокую стабильность обработки и увеличение скорости снятия металла на 200 % при сверлении жаропрочных сплавов, нержавеющей стали и других материалов….

Новый инструмент HiPACS от Kennametal за один шаг выполняет сверление и зенкование крепежных отверстий в деталях авиационного назначения

Компания Kennametal представляет систему HiPACS для изготовления отверстий с фаской под крепления в деталях авиационно-космического назначения. Новый высокоточный инструмент, выполняющий сверление и зенкование за одну операцию, отвечает строгим требованиям к точности, предъявляемым аэрокосмической отраслью, и отличается высокой стойкостью при обработке…

Установка сверл на станке

Сверление на токарном станке производится невращающимся сверлом, которое закрепляется в пиноли задней бабки.

Сверла с коническим хвостовиком устанавливают непосредственно в отверстие пиноли, если размеры их совпадают, или при помощи переходной втулки 2. одетой на хвостовик сверла 1.

Сверла с цилиндрическим хвостовиком закрепляются на станке посредством сверлильных патронов, одна из конструкций которых показана на рис. 55, а. В наклонных отверстиях корпуса 3 установлены кулачки 4 в виде цилиндрических стержней со скосами для закрепления сверла и резьбовой частью на наружной поверхности. Внутри муфты 5 закреплена гайка с конической резьбой, которая соединяется с резьбой кулачков. Если ключом 2 вращать муфту, то кулачки, перемещаясь в наклонных отверстиях будут сжиматься, обеспечивая закрепление и центрирование сверла. Корпус 8 с обратной стороны имеет глухое коническое отверстие, которым он неподвижно насаживается на хвостовик 1. Такие патроны выпускаются трех размеров: ПС-6, ПС-9, ПС-16 (цифры обозначают наибольший диаметр закрепляемого сверла).

Если требуется частая смена инструментов, устанавливаемых в задней бабке, удобно пользоваться быстросменными патронами (рис. 55, б). Патрон состоит из корпуса 2 с коническим хвостовиком 6 и двумя отверстиями, в которых свободно завальцованы шарики 3. В корпус устанавливается переходная втулка 1 с коническим отверстием Морзе. На наружной поверхности втулки выполнены две радиусные канавки, в которые при рабочем положении патрона западают шарики. На корпусе свободно надета муфта 4, продольное положение которой ограничивается пружинными кольцами 7 и 9 и подпружиненным шариком 5, фиксирующим муфту в рабочем состоянии. Отверстие 5 предусмотрено для выхода воздуха при установке переходной втулки в патрон.

Действие патрона следующее, Требуемое сверло вставляется в переходную втулку и вместе с ней устанавливается в патрон. Муфта при этом сдвинута вправо. Затем при перемещении влево муфта нажимает на шарики, которые входят в выемки втулки и закрепляют ее. Чтобы сменить инструмент, достаточно сдвинуть муфту вправо, и втулка со сверлом свободно вынимается из патрона.

Для сверления с механической подачей иногда применяют несложное приспособление в виде втулки с прямоугольным выступом, которым она закрепляется в резцедержателе суппорта.

READ  Чем Резать Профиль Для Гкл

При глубоком сверлении возникает необходимость частого вывода сверла из отверстия для очистки от стружки. В этом случае значительно сократить время отвода сверла и возвращения его в исходное положение можно, применяя довольно простой патрон (рис 55, в). Он состоит из корпуса 2 с коническим хвостовиком, сверлодержателя 1 с ввернутой в него рукояткой 3. В корпусе имеется продолговатый паз с рядом поперечных канавок. Для отвода сверла достаточно вывести рукоятку из канавки и отвести сверло вправо. Возвращение сверла в рабочее положение выполняется в обратном порядке.

Режимы резания при сверлении и рассверливании

Глубина резания t при сверлении характеризуется размером сверла и равна ½ его диаметра. При рассверливании она определяется полуразностью диаметров отверстия после и до обработки.

Подача S при сверлении и рассверливании соответствует осевому перемещению сверла за один оборот заготовки и выражается в мм/об.

Скорость резания v для невращающегося сверла равна окружной скорости вращения обработанной поверхности отверстия в м/мин.

Подача сверла на токарных станках чаще всего осуществляется вручную. При работе с механической подачей для отверстий диаметром от 5 до 30 мм в стальных заготовках ее можно выбирать в пределах 0,1—0,4 мм/об. Большие подачи в указанных пределах принимают для сверл большего диаметра. При сверлении чугуна подачу можно увеличить примерно в 1,5 раза; то же самое и при рассверливании отверстий.

Скорость резания для быстрорежущих сверл при обработке отверстий в стальных и чугунных заготовках выбирают в пределах 20—40 м/мин; для сверл, оснащенных пластинками твердого сплава, ее можно увеличивать в 2—3 раза. Для сверл меньшего диаметра принимают большие значения скорости резания.

Рассверливание отверстий

Сверление отверстий большого диаметра сильно затрудняется из-за значительного усилия подачи. Поэтому отверстия диаметром свыше 30 мм выполняют двумя сверлами. Диаметр первого из них принимают равным примерно ½ диаметра отверстия. Благодаря этому перемычка второго сверла не участвует в резании, намного снижается усилие подачи и уменьшается вероятность ухода сверла в сторону. Приемы рассверливания те же, что и при сверлении.

токарный лайфхак о сверлении большими сверлами

Приемы сверления

Обычно применяется следующий способ сверления на токарном станке После подготовительной работы включают вращение шпинделя и вручную поворотом маховичка задней бабки подводят сверло к торцу вращающейся заготовки. При этом следует избегать удара, иначе сверло может поломаться. Вначале сверло подают вперед медленно, когда же оно врежется в металл на глубину, немного большую длины режущей части, подачу можно увеличить. Подача сверла должна выполняться плавно, без рывков.

Особую осторожность следует проявлять при выходе сверла иа сквозного отверстия. В этом месте возникает неравномерная нагрузка режущих кромок и они могут выкрошиться. Поэтому на выходе подачу надо резко уменьшать.

Прежде чем выключить вращение шпинделя, сверло надо вывести из отверстия, иначе вследствие упругой деформации металла оно может заклиниться в отверстии.

При сверлении стружка тяжело выходит из отверстий, поэтому сверло надо периодически очищать металлической щеткой.

Глубину глухого отверстия выдерживают по миллиметровой шкале пиноли, по лимбу маховичка задней бабки, а при их отсутствии — по меловой риске, которую наносят на сверло.

Для увеличения стойкости сверла его рекомендуется охлаждать. Стали сверлят с применением эмульсии, цветные металлы — с охлаждением или всухую, чугун — без охлаждения. Струю охлаждающей жидкости направляют на сверло около торца обрабатываемой детали и включают одновременно с началом резания.

Ручная подача сверла, особенно при обработке отверстий большого диаметра, слишком затруднительна. Поэтому в ряде моделей современных токарных станков предусмотрено устройство для механического перемещения задней бабки. Оно представляет собой замок. который состоит из двух угольников, соответственно прикрепленных к поперечным салазкам суппорта и плите задней бабки. Перед включением механической подачи заднюю бабку открепляют от станины.

Подготовка к сверлению

Важные условия качественной токарной обработки отверстия сверлом: прочное закрепление заготовки без заметного биения, перпендикулярность ее торца к оси вращения, отсутствие на торце неровностей и выпуклости, совпадение оси пиноли с осью шпинделя, придание первоначального направления сверлу.

Заготовку, установленную в токарном патроне, при необходимости выверяют и прочно закрепляют. Торец ее перед сверлением чисто подрезают. Чтобы придать первоначальное направление сверлу, особенно при большой длине его, рекомендуется в центре торца делать небольшое конусное углубление. Его выполняют упорным резцом (рис 56, а) или коротким жестким сверлом (рис 56, б). Угол центрового углубления делают на 20—30° меньше угла при вершине рабочего сверла. При таком условии перемычка сверла в начальный момент не будет участвовать в резании (рис. 56, б), что намного уменьшает опасность смещения сверла в сторону.

Для повышения жесткости длинных сверл рекомендуется подпирать их в начале сверления обратной стороной резца, закрепленного в резцедержателе несколько выше оси центров.

Перед сверлением глубокого отверстия заготовку следует сначала надсверлить коротким сверлом такого, же диаметра на глубину, примерно равную диаметру отверстия. В этом случае основное сверло, получив первоначальное направление, не сможет отклониться в сторону.

Не менее важна правильная установка сверла. Хвостовик его и отверстие пиноли следует насухо протереть, забоины на хвостовике удалить напильником. Сверло устанавливают в пиноль резким осевым толчком.

Сверление отверстий

Отверстия в сплошном металле образуют сверлением. Сверление и рассверливание на токарных станках применяются главным образом как метод предварительной обработки.

Осуществляется сверление при вращающейся заготовке и реже при вращающемся сверле, закрепленном в шпинделе станка

Сверление отверстий обеспечивает точность размеров отверстия до 12-го квалитета и шероховатость до 3—4-го классов. Рассверливанием увеличивают диаметр ранее просверленного отверстия и при определенных условиях повышают его точность примерно на один квалитет.

Рассматриваемая токарная обработка металлов, производится на токарных станках, а в качестве режущих инструментов используются преимущественно спиральные сверла.

Спиральное сверло представляет собой двузубый режущий инструмент, состоящий из рабочей части, шейки и хвостовика. Рабочая часть включает режущую и направляющую части.

Особенности сверления глубоких отверстий

При обработке глубоких отверстий условия работы спирального сверла резко ухудшаются: затрудняется выход стружки и подвод охлаждающей жидкости к режущим кромкам, уменьшается жесткость сверла и появляется опасность увода его в сторону. В таких случаях рекомендуется пользоваться сверлами для глубокого сверления, в конструкции которых предусмотрена возможность частичного или полного устранения указанных недостатков.

Охлаждение режущих кромок и выход стружки из глубокого отверстия улучшаются при применении спиральных сверл с каналами для подвода охлаждающей жидкости под давлением (рис. 58, а). Однако такие сверла, обладая недостаточной жесткостью, не обеспечивают строгой прямолинейности оси отверстия и их применяют лишь для обработки отверстий невысокой точности.

Для улучшения направления сверла в отверстии и условий охлаждения режущих кромок применяются четырехленточные спиральные сверла (рис. 58, б). У таких сверл несколько увеличена толщина сердцевины, а на спинках каждого зуба выполнены по две направляющие ленточки. Образующиеся за счет этого дополнительные канавки 1 позволяют жидкости свободно подходить к режущим кромкам, не встречая на своем пути раскаленную стружку. При применении таких сверл точность обработки отверстий несколько повышается, однако недостатки, присущие обычным спиральным сверлам (невысокая жесткость, наличие перемычки), остаются.

Глубокие отверстия повышенной точности обрабатываются пушечными и ружейными сверлами. Характерная особенность их конструкции— наличие одного зуба и большой направляющей поверхности.

Пушечное сверло (рис. 58, в) представляет собой круглый стержень с цилиндрическим хвостовиком 3. Для образования режущей кромки 1 и пространства для выхода стружки рабочая часть 2 сверла срезана по радиусу, а для уменьшения трения о стенки отверстия создана небольшая обратная конусность на направляющей части. Недостатки таких сверл: затрудненный выход стружки из отверстия и недостаточно эффективное охлаждение режущей кромки.

Ружейное сверло (рис. 58, г) обычно изготавливается из трубки быстрорежущей стали. По всей длине ее, за исключением хвостовика 3, провальцована угловая стружечная канавка. При этом внутри сверла образуется серпообразный канал, по которому подводится охлаждающая жидкость. Напорная струя жидкости, подаваемая под высоким давлением, не только интенсивно охлаждает режущую кромку, но и вымывает стружку из отверстия. Благодаря ломаной форме режущей кромки 1 широкая стружка разделяется и на дне отверстия образуется центрирующий конус, улучшающий направление сверла во время резания.

Чтобы придать пушечным и ружейным сверлам первоначальное направление, отверстие предварительно надсверливают коротким спиральным сверлом.

Токарная обработка металла: оборудование и виды работ

  • Принцип токарной обработки
  • Оборудование и инструментарий
  • Работы, выполняемые на токарных станках

Токарные работы – это широкий спектр процедур по механической обработке металлических деталей. Она проводится посредством срезания слоя металла с заготовки специальными инструментами с целью получения детали нужной формы и размеров. Готовое изделие должно соответствовать определенным допускам и стандартам качества. Для контроля производимых деталей используются различные измерительные инструменты, калибры, эталоны.

Оборудование и инструментарий

Технология токарных работ предусматривает использование специального оборудования – токарные станки. С их помощью производятся детали, форма которых является телом качения. В современном производстве используют семь основных видов токарных станков:

  • токарно-револьверные – предназначены для изготовления мелких деталей в больших количествах; комплектуются револьверной головкой, позволяющей быстро менять режущий инструмент, перенастраивать оборудование на другой вид работы;
  • токарно-винторезные – отличаются возможностью совмещения высокой скорости вращения патрона с продольным перемещением инструмента; используются для крупносерийного и массового производства;
  • токарно-карусельные – универсальные станки с планшайбой и станиной больших размеров;
  • токарно-фрезерные – универсальное оборудование для индивидуального, массового и серийного производства деталей со сложной формой;
  • токарные автоматы – станки с большим числом шпинделей, предназначенные для изготовления деталей со сложной геометрией многопрофильных поверхностей;
  • лоботокарные станки – специализированная техника для работы с лобовыми поверхностями; используются для поштучного производства деталей, а также для мелких серий.

Работая на токарном станке, используют различный инструментарий:

  • разного рода резцы;
  • сверла;
  • метчики;
  • зенкеры;
  • плашки;
  • развертки;
  • резьбонарезные головки.

Работы, выполняемые на токарных станках

На токарном оборудовании производятся детали типа тел вращения:

  • втулки;
  • шкивы;
  • валы;
  • кольца;
  • зубчатые колеса;
  • гайки;
  • муфты, прочее.

Для этого проводится механическая обработка разных поверхностей, вытачиваются канавки, выполняется сверление, зенкерование, растачивание, нарезание резьбы, прочее. Рассмотрим особенности основных видов работ на токарном станке.

Принцип токарной обработки

Основы токарной работы заключаются в срезании с металлической заготовки тонкого слоя металла до получения требуемой формы детали и шероховатости ее поверхности. Выполняются эти работы на специальном токарном оборудовании с применением различных режущих инструментов.

Токарная обработка металла подобна процессу расклинивания его приповерхностного слоя посредством острой кромки рабочего инструмента. Под воздействием механического усилия кромка врезается в заготовку, снимая тонкий слой металла и превращая его в стружку. Слой металла заготовки, срезаемый в процессе токарной обработки, называется припуском.

Чтобы обеспечить требуемое качество токарных работ следует обеспечить непрерывность и высокую скорость резки металла заготовки. Для каждого металла есть своя скорость резки, ее величина указана в таблице.

Форма будущей детали формируется за счет относительного движения инструмента и заготовки, а также геометрии кромки используемого инструмента. Режущий инструмент может совершать поступательное движение поперек/вдоль изделия, а также под постоянным/меняющимся углом.

Проточка канавок

Работы, выполняемые на токарных станках по вытачиванию канавок, проводятся с помощью прорезных резцов, кромка которых и воспроизводит форму нужной канавки. Поскольку обычно ширина канавки небольшая, нужны резцы с узкой кромкой, из-за чего она получается достаточно хрупкой. Чтобы увеличить точность работы такими резцами высоту их головок делают больше их ширины в несколько раз.

Вытачивают канавки также и отрезными резцами, которые имеют головку большей длины. Длину головки выбирают, исходя из размеров будущей детали, она должна быть на 50% больше величины ее диаметра.

Устанавливая резчик (отрезной, прорезной) на станок, нужно соблюдать точность монтажа. Перекос при монтаже приведет к тому, что резец будет тереться о стенки вытачиваемой канавки – это приведет к изготовлению бракованных деталей и поломке режущей кромки.

Вытачивая узкие канавки, делается один проход, а для широких канавок выполняется несколько проходов.

Подрезание торцов, уступов

Для подрезания используется специальный инструмент – подрезной резец (Рис.3).

Подрезной инструмент используется для точения детали в центрах, если нужно выполнить обработку торца полностью, в заднюю бабку станка нужно вставить полуцентр и таким способом выполнить точение.

Когда заготовку фиксируют в патроне только одним концом, то для обработки торца можно пользоваться проходным отогнутым резцом. Для выполнения этой процедуры, а также для протачивания уступов применяются подрезные резцы упорного типа. Этот инструмент может работать с продольной и поперечной подачей (Рис.4).

Подрезая торцы, нужно следить, чтобы вершина режущей кромки располагалась на уровне центров. Инструмент, размещенный выше или ниже центров, оставит на торце сплошной неподрезанный выступ.

Обтачивание цилиндрических поверхностей

Чтобы обрабатывать гладкие цилиндрические поверхности используют проходные резцы (черновые и чистовые) в два приема. Изначально работают черновым (Рис.1), выполняя грубое обтачивание.

После черновой обработки, поверхность имеет высокую шероховатость и крупные риски. Чтобы их удалить пользуются чистовыми резцами (Рис.2).

Нормальные чистовые резцы используются при точении с малой подачей и небольшой глубиной срезания слоя металла. Инструмент с широкой кромкой используется для больших подач и позволяет получить гладкую поверхность.

READ  Какой Шуруповерт Нужен Для Сверления Льда

Режимы работы

Важным показателем можно назвать то, какой режим обработки используется. К основным показателям можно отнести:

  • Скорость вращения шпинделя, в котором закрепляют заготовки. Скорость устанавливается исходя из того, какое резание проводится: чистовое или черновое. Скорость чернового резания меньше, чем скорость чистового резания. Это связано с взаимосвязью: чем больше скорость вращения шпинделя, тем меньше подача. В противном случае возникает ситуация, когда резцы деформируются или начинает «гореть» металл. Чрезмерная нагрузка оказывает плохое влияние на состояние станка.
  • Подача выбирается с учетом скорости. При черновой обработке она больше, что ускоряет процесс снятия большей части металла, при чистовой – меньше, что необходимо для достижения необходимой точности.

В зависимости от режима обработки также выбираются резцы. Их виды зависят от формы режущей кромки, головки и стержня.

Точение заготовок из металла путем использования станков токарной группы – наиболее популярный метод обработки, несмотря на появление современного лазерного и другого оборудования.

Столь высокая популярность связана с надежность станков и их относительно небольшой стоимость, долгим сроком службы.

Некоторые модели из токарно-винторезной группы служат на протяжении нескольких десятилетий при надлежащем уходе и периодическом ремонте.

Пилильные

Данная группа используется для распиловки заготовок и целых древен, а также для придания формы плоским элементам. Пилильные в свою очередь следует разделить на следующие подгруппы:

  • Пилорамы, при помощи которых осуществляется продольная и поперечная распиловка материала при помощи линейных пил, которые совершают возвратно-поступательные движения относительно заготовок. Данное оборудование не относится к экономичному оборудованию, к тому же оно достаточно громоздкое, поэтому встречается довольно редко.
  • Круглопильные, которые представляют собой автоматические и ручные, выполняющие распиловку древесины в наклонной и вертикальной плоскостях при помощи круглых пил. Такое оборудование нашло применение при формовке. Классифицируется по количеству пил, их диаметру, мощности и производительности.
  • Ленточные, функционирующие автоматически и с ручным управлением. Разрезание дерева происходит при линейном движении ленты. Используется как во время заготовки, так и при дальнейшей обработке. Достоинством данного оборудования можно назвать простоту обслуживания и экономичность, однако более низкую точность, если сравнивать с круглопильными.

Преимущества, особенности и видео примеры токарных работ по металлу на станке

Особенности токарных станков по металлу

Способ придания необходимых размеров и формы заготовке определяет также особенности станков токарной группы. Несмотря на то, что разные виды станков отличаются между собой, можно выделить несколько схожих признаков, которые свойственные всей токарной группе:

  • обработки поверхности проводится резанием. инструменты, которые используются в большинстве случаев – резцы, виды которых зависят от многих показателей;
  • имеется шпиндель с кулачковым патроном, в котором закрепляются заготовки. основное движение – вращательное, передается шпинделю;
  • резцы закрепляют в суппорте, которому предается возвратно-поступательное движение. особенности конструкции суппорта позволяют использовать разные методы обработки поверхности;
  • крепление изделия в некоторых случаях может проводиться по двум сторонам, для чего используют заднюю бабку;
  • станок токарного типа можно использовать для растачивания отверстий, которые расположены вдоль оси изделия;
  • скорость и подача, при которых проводится резание, могут устанавливаться в зависимости от типа поверхности заготовки, необходимых показателей точности снятия металла и шероховатости получаемой поверхности. для этого конструкция токарных станков имеет сложную схему передач.

Резание на токарных станках выполняется только при условии использования средств индивидуальной защиты, а также при установке защитного экрана.

Общие сведенья о токарной обработке металла

Процедура обработки металла производится на специальных токарных станках при помощи различных режущих инструментов. Заготовка устанавливается в шпиндель устройства, работа которого начинается после включения электродвигателя.

Обрабатываемая деталь начинает вращаться с большой скоростью и резцом, сверлом или другим режущим инструментом с нее по всей поверхности снимается небольшой слой металла.

С помощью постоянного перемещения инструмента происходит непрерывность резки детали до необходимых размеров и форм. Более подробный процесс токарной обработки детали можно посмотреть по видео ролику.

Станки позволяют производить эффективную обработку различных заготовок, получив в результате коническую, резьбовую, цилиндрическую, фасонную или другую поверхность. С помощью токарных работ могут быть выполнены:

  • кольца;
  • валы;
  • шкивы;
  • муфты;
  • зубчатые кольца;
  • втулки;
  • гайки.
  • Вытачивать канавки.
  • Отрезать различные части изделий.
  • Делать обработку разных отверстий при помощи зенкерования, развертывания, сверления, растачивания.
  • Нарезать резьбу.

В процессе выполнения работ следует обязательно пользоваться различным измерительным инструментом, которым определяются размеры, формы и варианты расположения заготовок. При единичном и мелкосерийном производстве для этого применяются нутромеры, штангенциркули, микрометры. На больших предприятиях пользуются предельными калибрами.

Точение металла – Токарная обработка металла –технология, особенности, видео

На протяжении многих десятилетий проводится токарная обработка металла и за столь длительный срок, как технология обработки, так и виды станков значительно изменились. Несмотря на это, общие черты, которые свойственны токарным станкам по металлу, сохранились.

Виды используемых резцов

Резцы для обработки на токарном стенке бывают:

  • проходными, предназначенными для обработки плоских поверхностей торцов детали;
  • подрезными, используемыми для точения цилиндрических поверхностей;
  • отрезными, которые отрезают готовую деталь от заготовки;
  • фасонные и галтельные, которые используются для точения фасонных поверхностей и скруглений;
  • резьбовые, которые подразделяются на наружные и внутренние;
  • расточные резцы, которые используются для обработки внутренних поверхностей;
  • канавочные, похожие на отрезные, применяемые для точения канавок.
  • цельные, чаще всего изготовленные из быстрорежущей стали;
  • составные с напаянными пластинами из твердого сплава, державка в этом случае изготовлена из углеродистой стали;
  • ставные со съемной пластиной, которую можно заменить в случае износа или образования скола.

Какое оборудование используется?

Самым востребованным оборудованием для резания поверхностей является токарно-винторезный станок, который считается широко универсальным.

Основными узлами данного оборудования являются:

  • передняя бабка на станке, имеющая коробку скоростей и шпиндель, и задняя бабка, оснащенная корпусом, продольной салазкой и пинолью;
  • суппорт – верхне- и среднеполочные, продольные нижние салазки на станке, держатель резца;
  • станина горизонтального плана с тумбами, в которых расположены двигатели на станке;
  • коробка подач на станке.
  • Главным критерием токарного станка считается скорость, напрямую увеличивающая производительность.
  • Для получения высокоточных линейных и диаметральных геометрических величин часто используются программируемые станки с ЧПУ.
  • Плюсами резания механизмом с ЧПУ являются:

наличие программ предварительного нагрева узлов, что снижает термическую деформацию заготовок;

отсутствие станочных приводов-зазоров в передаточных устройствах;

рассекание любых металлов: чугуна, меди, титана, нержавеющей стали и др.;

обточка поверхностей любых форм: сферических, цилиндрических и т.д.

Все устройства с ЧПУ оснащены износостойкими направляющими с низкими показателями силы трения, что обеспечивает высокую точность и скорость обработки.

ВАЖНО ЗНАТЬ: Виды резки листового металла

  • В устройстве с ЧПУ направляющие могут быть расположены вертикально и горизонтально.
  • Для максимально эффективного использования токарного устройства с ЧПУ должен быть тщательно подготовлен весь процесс и составлена программа управления.
  • Важным моментом является грамотное связывание системы координат механизма с ЧПУ, положение обрабатываемой заготовки и исходной точки передвижения режущего инструмента.
  • Основой программирования механизма с ЧПУ является движение режущего приспособления по отношению к системе координат двигателя, которая находится в состоянии покоя.
  • Обработка деталей механизмом с ЧПУ производится следующим образом:

Разделение процесса на 3 стадии: черновую, чистовую и дополнительную отделочную. Если есть возможность, то последние оба вида отделки нужно совместить, что увеличит производительность и снизит трудоемкость;

Соблюдение конструкторских и технологических правил для уменьшения погрешностей крепления и размещения детали;

Обеспечение полной обработки детали при минимальном количестве установок;

  • Важной частью процесса резания на устройстве с ЧПУ является, так называемая, отдельная операция, подразумевающая обработку одного изделия на одном станке.
  • Процесс состоит из нескольких переходов, которые делятся на самостоятельные проходы.
  • Правильное программирование механизма с ЧПУ нуждается в разработке последовательности процесса.

Для этого нужно задать общее количество установок, количество переходов и проходов, тип обработки.

Также для резания используются такие виды станков, как токарно-револьверные, предназначенные для сложных изделий, токарно-карусельные, многорезцовые полуавтоматические, токарно-винторезные, токарно-фрезерные, лоботокарные.

Частое применение получили винторезные и карусельные станки. Отличаются карусельные станки возможностью обработки крупных заготовок, на винторезном механизме это невозможно.

  • В токарно-револьверном оборудовании режущие приспособления фиксируются в барабане.
  • Такой вид оборудования оснащается приводными блоками, расширяющими спектр работ в отличие от стандартных устройств, например сверление отверстий, нарезание резьбы, фрезеровка.
  • Используются подобные станки на крупных предприятиях.
  • С использованием токарного обрабатывающего центра выполняется токарно-фрезерная обработка в полуавтоматическом режиме.
  • Токарно-фрезерная обработка часто используется для титана, алюминия и других сложных в обработке материалов.
  • Токарная обработка металла – один из популярных методов резания любых металлов: алюминия, титана, меди, олова и других, однако осуществить такую обработку можно лишь на предприятии, что обусловлено использованием станков.
  • Технология резания представлена на видео в нашей статье.

Принципы токарной обработки

Технология токарных работ по металлу предполагает использование специальных станков и режущего инструмента (резцы, сверла, развертки и др.), посредством которого с детали снимается слой металла требуемой величины. Токарная обработка выполняется за счет сочетания двух движений: главного (вращение заготовки, закрепленной в патроне или планшайбе) и движения подачи, совершаемого инструментом при обработке деталей до заданных параметров их размера, формы и качества поверхности.

За счет того, что существует множество приемов совмещения этих движений, на токарном оборудовании работают с деталями различной конфигурации, а также осуществляют целый перечень других технологических операций, к которым относятся:

  • нарезание резьбы различного типа;
  • сверление отверстий, их растачивание, развертывание, зенкерование;
  • отрезание части заготовки;
  • вытачивание на поверхности изделия канавок различной конфигурации.

Основные виды токарных работ по металлу

Благодаря такой широкой функциональности токарного оборудования на нем можно сделать очень многое. Например, с его помощью выполняют обработку таких изделий, как:

  • гайки;
  • валы различных конфигураций;
  • втулки;
  • шкивы;
  • кольца;
  • муфты;
  • зубчатые колеса.

Естественно, что токарная обработка предполагает получение готового изделия, которое соответствует определенным стандартам качества. Под качеством в данном случае подразумевается соблюдение требований к геометрическим размерам и форме деталей, а также степени шероховатости поверхностей и точности их взаимного расположения.

Для обеспечения контроля над качеством обработки на токарных станках применяют измерительные инструменты: на предприятиях, выпускающих свою продукцию крупными сериями, – предельные калибры; для условий единичного и мелкосерийного производства – штангенциркули, микрометры, нутрометры и другие измерительные устройства.

Измерительные инструменты, часто используемые в токарном деле

Первое, что рассматривают при обучении токарному делу, – это технология обработки металлов и принцип, по которому она осуществляется. Заключается этот принцип в том, что инструмент, врезаясь своей режущей кромкой в поверхность изделия, зажимает его. Чтобы снять слой металла, соответствующий величине такого врезания, инструменту надо преодолеть силы сцепления в металле обрабатываемой детали. В результате такого взаимодействия снимаемый слой металла формируется в стружку. Выделяют следующие разновидности металлической стружки.

Такая стружка формируется тогда, когда на высоких скоростях обрабатываются заготовки, выполненные из мягкой стали, меди, олова, свинца и их сплавов, полимерных материалов.

Образование такой стружки происходит, когда на небольшой скорости обрабатываются заготовки из маловязких и твердых материалов.

Стружка такого вида получается при обработке заготовок из материала, отличающегося невысокой пластичностью.

Формирование такой стружки свойственно для среднескоростной обработки заготовок из стали средней твердости, деталей из алюминиевых сплавов.

Режущий инструмент токарного станка

Эффективность, которой отличается работа на токарном станке, определяется рядом параметров: глубиной и скоростью резания, величиной продольной подачи. Чтобы обработка детали была высококачественной, необходимо организовать следующие условия:

  • высокую скорость вращения заготовки, фиксируемой в патроне или планшайбе;
  • устойчивость инструмента и достаточную степень его воздействия на деталь;
  • максимально возможный слой металла, убираемый за проход инструмента;
  • высокую устойчивость всех узлов станка и поддержание их в рабочем состоянии.

Скорость резки выбирается на основе характеристик материала, из которого сделана заготовка, типа и качества применяемого резца. В соответствии с выбранной скоростью резки выбирается частота вращения шпинделя станка, оснащенного токарным патроном или планшайбой.

При помощи различных типов резцов можно выполнять черновые или чистовые виды токарных работ, а на выбор инструмента основное влияние оказывает характер обработки. Изменяя геометрические параметры режущей части инструмента, можно регулировать величину снимаемого слоя металла. Выделяют правые резцы, которые в процессе обработки детали передвигаются от задней бабки к передней, и левые, движущиеся, соответственно, в обратном направлении.

По форме и расположению лезвия резцы классифицируются следующим образом:

  • инструменты с оттянутой рабочей частью, ширина которой меньше ширины их крепежной части;
  • прямые;
  • отогнутые.

Различаются резцы и по цели применения:

  • подрезные (обработка поверхностей, перпендикулярных оси вращения);
  • проходные (точение плоских торцовых поверхностей);
  • канавочные (формирование канавок);
  • фасонные (получение детали с определенным профилем);
  • расточные (расточка отверстий в заготовке);
  • резьбовые (нарезание резьбы любых видов);
  • отрезные (отрезание детали заданной длины).

Качество, точность и производительность обработки, выполняемой на токарном станке, зависят не только от правильного выбора инструмента, но и от его геометрических параметров. Именно поэтому на уроках в специальных учебных заведениях, где обучаются будущие специалисты токарного дела, очень большое внимание уделяется именно вопросам геометрии режущего инструмента.

Основными геометрическими параметрами любого резца являются углы между его режущими кромками и направлением, в котором осуществляется подача. Такие углы режущего инструмента называют углами в плане. Среди них различают:

  • главный угол – φ, измеряемый между главной режущей кромкой инструмента и направлением подачи;
  • вспомогательный – φ1, расположенный, соответственно, между вспомогательной кромкой и направлением подачи;
  • угол при вершине резца – ε.
READ  Сверление сквозных и глубоких отверстий

Угол при вершине зависит только от того, как заточен инструмент, а вспомогательные углы можно регулировать еще и его установкой. При увеличении главного угла уменьшается угол при вершине, при этом уменьшается и часть режущей кромки, участвующей в обработке, соответственно, стойкость инструмента тоже становится меньше. Чем меньше значение этого угла, тем большая часть режущей кромки участвует как в обработке, так и в отводе тепла от зоны резания. Такие резцы являются более стойкими.

Практика показывает, что для токарной обработки не слишком жестких заготовок небольшого диаметра оптимальным является главный угол, величина которого находится в интервале 60–90 градусов. Если обрабатывать необходимо заготовку большого диаметра, то главный угол необходимо выбирать в интервале 30–45 градусов. От величины вспомогательного угла зависит прочность вершины резца, поэтому его не делают большим (как правило, он выбирается из интервала 10–30 градусов).

Особое внимание на уроках по токарному делу уделяется и тому, как правильно выбирать тип резца в зависимости от вида обработки. Так, существуют определенные правила, по которым обработку поверхностей того или иного типа выполняют с помощью резца определенной категории.

  • Обычные прямые и отогнутые резцы необходимы для обработки наружных поверхностей детали.
  • Упорный проходной инструмент потребуется для торцевой и цилиндрической поверхностей.
  • Отрезной резец выбирают для протачивания канавок и обрезки заготовки.
  • Расточные резцы применяются для обработки отверстий, просверленных ранее.

Отдельную категорию токарного инструмента составляют резцы, с помощью которых можно обрабатывать фасонные поверхности с длиной образующей косильной лески до 40 мм. Такие резцы подразделяются на несколько основных типов:

  • по конструктивным особенностям: стержневые, круглые и призматические;
  • по направлению, в котором осуществляется обработка изделия: радиальные и тангенциальные.

Токарная обработка металла — все о технологии токарных работ

К наиболее распространенным методикам изготовления деталей с заданными геометрическими параметрами относится токарная обработка металла. Суть данной методики, позволяющей также получать поверхность с требуемой шероховатостью, заключается в том, что с заготовки убирают лишний слой металла.

Виды оборудования для токарной обработки

Из всех типов оборудования для токарной обработки наибольшее распространение и на крупных, и на мелких предприятиях получил токарно-винторезный станок. Причиной такой популярности является многофункциональность этого устройства, благодаря которой его с полным основанием можно назвать универсальным.

Перечислим основные элементы конструкции такого станка:

  • две бабки – передняя и задняя (в передней бабке размещают коробку скоростей станка; шпиндель с токарным патроном (или планшайбой), на задней бабке размещены продольные салазки и пиноль оборудования);
  • суппорт, в конструкции которого различают верхние и нижние салазки, поворотную плиту и резцедержатель;
  • несущий элемент оборудования – станина, установленная на две тумбы, в которых размещают электродвигатели.
  • коробка подач.

Все большее распространение получают станки, управление которыми осуществляется при помощи специальных компьютерных программ, – станки с ЧПУ. Конструкция таких станков отличается от обычной только тем, что в ней присутствует специальный блок управления.

В отдельные категории выделяют следующие виды станков токарной группы:

  • токарно-револьверное оборудование, применяемое для обработки деталей сложной конфигурации;
  • токарно-карусельные станки, среди которых различают одно- и двухстоечные;
  • многорезцовое полуавтоматическое оборудование, которое можно встретить на предприятиях, выпускающих свою продукцию крупными сериями;
  • обрабатывающие комплексы, на которых можно выполнять как токарные, так и фрезерные операции.

Без токарной обработки сегодня крайне сложно представить многие производственные отрасли. Поэтому данный вид работы с металлом продолжает развиваться, несмотря на и без того высокий уровень, позволяющий обеспечить высочайшее качество и скорость обработки.

Сверление и рассверливание отверстий на токарном станке

Сверло, одно из наиболее популярных токарных приспособлений, чаще всего его применяют для изготовления различных отверстий во всевозможных металлических заготовках. Для применения в различных операциях существуют разные виды сверл.

22-2 Сверление и рассверливание отверстий

В процессе сверления на токарном станке сверло вращается вдоль оси металлической заготовки, получая вращательное движение и движение додачи сверху.

Все сверла состоят из нескольких частей, каждая отдельная часть несет в себе определенный функционал. Основа. рабочая часть, цилиндрическая шейка и хвостовик для крепления на токарном станке.

На рабочей части сверла располагаются две винтовые канавки, они служат для отвода металлической стружки из рабочего отверстия. Хвостовик сверла может быть цилиндрической или конической формы, в зависимости от диаметра сверла. Винтовые канавки на рабочей части образуют два зуба сверла, двигаясь по хвостовику, они затачивают заднюю поверхность. Каждый зуб имеет тонкую ленточку, она нужна для центрирования сверла в отверстии.

Заточку сверл производят на специальных или же универсальных токарных станках, при наличии специального точильного оборудования. Правильная заточка имеет высокую важность, если сверло заточено неправильно, результат его работы будет неточным, велика вероятность поломки сверла.

Для крепления сверла в станке используют различные инструменты, сверла с цилиндрическим хвостом крепят при помощи цанговых патронов, а сверла с коническим хвостовиком ставят в коническое отверстие задней бабки.

При работе с различными отверстиями применяют различные технологии и приспособления. Так при сверлении отверстий, длина которых больше диаметра, сверло периодически выводят из отверстия, не прекращая вращения. Делают это чтобы охладить режущую кромку и удалить стружку из спиральных канавок.

Для сверления сквозных отверстий, чтобы избежать поломки весь процесс заканчивают при минимальной подаче, и выводят сверло из вращающейся детали.

При работе с глухими отверстиями момент прекращения сверления определяют по специальной шкале, которая располагается на шпинделе задней бабки.

Сверление отверстий малого диаметра проводят в один прием, а для отверстий больше 30 мм, применяют два подхода, рассверливая сначала отверстие диаметром 15-20 мм и после увеличивая его до необходимой величины.

Для ступенчатого отверстия наиболее производительным методом считается обработка отверстия сначала сверлом большего диаметра, а затем доработка более тонким сверлом. На массовых производствах, для ступенчатых отверстий используют специальные комбинированные сверла, которые позволяют увеличить скорость и производительность без потери качества.

Процесс сверления и рассверливания производят на токарных станках, как с ручной, так и с механической подачей. Скорость резанья при сверлении отверстий зависит от материала заготовки. Для рассверливания деталей подходит та же скорость резания, что и для сверления.

Для обработки металлических деталей валов чаще всего применяют центра, базой для установки которых служат различные центровые отверстия токарного станка.

В процессе токарной обработки деталь опирается на центр основания конической поверхности, с углом вершины в 60 градусов. Для тяжелых деталей применяют угол наклона 75-90 градусов. Для улучшения качества обработки и для ее облегчения цилиндрическое отверстие заполняют смазкой.

При подготовке центровых отверстий применяют сверление и зенкование или же применяют специальные комбинированные сверла.

Большую важность имеет верное расположение центрового отверстия на торце металлической детали. Если отверстие не совпадает с геометрическим центром торцового сечения детали, то после обработки на поверхности останутся не обработанные участки.

Для разметки центрового отверстия используют специальный инструмент, которым наносят углубления на самой заготовке. При разметке на глаз или при помощи разметочного циркуля возможны значительные неточности. Для повышения точности используют центроискатель, его накладывают на торец заготовки и прокладывают риску при помощи линейки. Далее поворачивают центроискатель и прокладывают еще риску, точка пересечения двух рисок и будет центром детали.

Производят центрование металлических деталей и на специальном центровочном или токарном станке. На центровочных станках имеется специальное приспособление, в которых заготовка центруется с одной или сразу с двух сторон, в зависимости от оснащенности станка. В токарном станке центрование производят двумя способами: закрепляя в отверстии шпинделя при помощи патрона, или же в шпинделе станка может быть закреплено само центровочное сверло, тогда заготовку токарь держит в руках или придерживают ее люнетом.

Для повышения чистоты и точности обработки используют зенкера и развертки.

Зенкер – разновидность режущего инструмента, его используют для доработки отверстий после сверления. По своему устройству зенкер очень похож на сверло, он так же имеет рабочее основание, хвостовик и шейку. Но вместо 2 зубов у зенкера их может быть 3 или 4, и отсутствует перемычка. Рабочая часть включает в себя режущий и калибрующий участки, она выполняет часть резания, а калибрующая часть отвечает за получение необходимого диаметра.

Для отверстий 25-80 мм, применяют цельные, насадные зенкера. Припуск, который оставляют для зенкования после сверления от 0,5 до 2 мм. Скорость зенкования выбирают исходя из характеристик металла детали.

Развертка – режущий инструмент, по конструкции развертка напоминает сверло или зенкер, но в отличие от них имеет большее количество зубьев от 6 до 12, развертка снимает гораздо меньший припуск.

Рабочая часть развертки, как и у зенкера, состоит из режущей и калибрующей.

Для повышения чистоты поверхности и исключения так называемой огранки зубья разверток выполняются с неравномерным шагом.

В зависимости от диаметра отверстия применяют развертки различной конструкции. Отверстия диаметрами до 32 мм обрабатывают машинными развертками с цилиндрическим или коническим хвостовиком. Отверстия диаметрами от 25 до 100 мм развертывают надсадными развертками (насаживаемыми на оправку). Разверткой невозможно исправить направление. Ось направляется при предварительной обработке отверстия. Для возможности так называемого самоустанавливания в отверстии развертку крепят в специальных патронах, компенсирующих перекос или несовпадение оси инструмента и обрабатываемого отверстия.

Все цельные развертки имеют общий недостаток: вследствие износа их диаметральный размер уменьшается, и инструмент выходит из строя. Поэтому часто применяют регулируемые развертки, зубья которых допускают регулировку по диаметру в определенных пределах.

Припуск под развертывание назначают в зависимости от размера обрабатываемого отверстия в пределах 0,15—0,30 мм на диаметр.

Качество обработки во многом зависит от правильного выбора охлаждающей жидкости. Обычно при развёртывании в качестве охлаждающей жидкости применяют эмульсию или осерненное минеральное масло (сульфофрезол), а также растительные масла. Чугун, бронзу и латунь чаще всего обрабатывают без охлаждения.

При развертывании отверстий необходимо следить за состоянием торцовой поверхности. Если торец детали не перпендикулярен ее оси, то не все зубья развёртки будут работать и развертка не получит правильного направления.

Зенкер затачивают на универсально-заточном станке по задней поверхности. Его укрепляют на оправке, установленной в приспособлении, и подводят к кругу. Передвижной упор фиксирует положение зуба зенкера, опираясь о переднюю его поверхность. Затачивание производится по всей режущей части зенкера.

Особенности технологии электроэрозионного сверления

При необходимости сверления глубокий и тонких отверстий в металле применяются специальные высокотехнологичные станки и оборудование.

Наиболее целесообразным является применение сверлильных станков электроэрозионного типа.

Разновидности отверстий в металле.

Все представленные выше виды отверстий определяются необходимостью конкретной конструкции.

Принцип работы электроэрозионных станков.

Основной принцип работы включает в себя прожигание отверстия посредством вращения на большой скорости электрода. При данном способе можно прожигать отверстия очень высокой точности с диаметром 0,2-3 миллиметра и глубиной до 100 миллиметров. У наиболее распространенных видов электроэрозионной дрели соотношение диаметра и глубины отверстия составляет 1 к 250.

токарная, обработка, сверление, отверстие

Подобный инструмент можно применять для всех видов металлов и сплавов, которые проводят ток.

Для обеспечения точности хода электрода применяется специальная направляющая втулка, которая служит для перпендикулярного удерживания электрода к поверхности металла. Такой инструмент применяется только в промышленном сверлении.

Электроэрозионное сверление отверстий

Невский инструментальный завод предлагает услуги по электроэрозионному сверлению тонких и глубоких отверстий в металлических конструкциях в Санкт-Петербурге и Ленинградской области.

Сверление отверстий в металлических конструкций. очень востребованная услуга в нашей компании.

Особенности электроэрозионного сверления отверстий

В различных конструкция возникает необходимость в сверлении отверстий малого диаметра и большой глубины. Такие отверстия практически невозможно просверлить без использования специальных технологий. Так как стандартное сверление не удовлетворяет всем требованиям.

Почему именно мы.

Невский инструментальный завод предлагает электроэрозионный прожиг отверстий в СПб и России недорого. Наша компания – это команда профессионалов высокого класса. Завод оборудован современными технологичными станками, использование которых позволяет нам безболезненно удерживать доступные цены на свои услуги. Использование электроэрозионного прожига дает возможность решения сложнейших технологических задач, направленных на изготовление деталей сложной конфигурации. Применение предлагаемых нами технологий позволяет оптимизировать процесс обработки металла.

При работе с клиентами мы соблюдаем четыре незыблемых принципа: быстро, качественно, аккуратно и недорого.

ООО «Невский инструментальный завод» Россия, 192177, Санкт-Петербург, 3-й Рыбацкий проезд, дом 3, литера А.

Адрес производства: Россия, 196641, Санкт-Петербург, посёлок Металлострой, Дорога на Металлострой, дом 5, литера Л.

Тел./Факс: 7 (812) 407-23-05Тел./Факс: 7 (812) 453-16-36E-mail: info@neviz.ru

© 2018. ООО «Невский инструментальный завод». Все права защищены

Tagged обработка, отверстие, сверление, токарная